All Issue

2019 Vol.10, Issue 1

General Article

31 March 2019. pp. 2-14
Abstract
References
1
M. del Río Merino, J.S.C. Astorqui, and M.G. Cortina, Viability analysis and constructive applications of lightened mortar (rubber cement mortar), Construction and Building Materials. 21 (2007), pp. 1785-1791.
10.1016/j.conbuildmat.2006.05.014
2
L. Guelmine, H. Hadjab, and A. Benazzouk, Effect of elevated temperatures on physical and mechanical properties of recycled rubber mortar, Construction and Building Materials. 126 (2016), pp. 77-85.
10.1016/j.conbuildmat.2016.09.018
3
A. Fadiel, F. Al Rifaie, A. Taher, and E. Fini, Use of crumb rubber to improve thermal efficiency of cement-based materials, American Journal of Engineering and Applied Sciences. 7(1) (2014), pp. 1-11.
10.3844/ajeassp.2014.1.11
4
H. Trouzine, A. Asroun, N. Asroun, F. Belabdelouhab, and N. Thanh Long, Problématique des pneumatiques usagés en Algérie, Nature & Technologie. 05 (2011), pp. 28-35.
5
A.M. Rashad, A comprehensive overview about recycling rubber as fine aggregate replacement in traditional cementitious materials, Review Article, International Journal of Sustainable Built Environment. (2015).
6
I.B. Topçu, The properties of rubberized concretes, Cement and Concrete Research. 25(2) (1995), pp. 304-310.
10.1016/0008-8846(95)00014-3
7
C.A. Issa and G. Salem, Utilization of recycled crumb rubber as fine aggregates in concrete mix design, Construction and Building Materials. 42 (2013), pp. 48-52.
10.1016/j.conbuildmat.2012.12.054
8
G. Girskas and D. Nagrockienė, Crushed rubber waste impact of concrete basic properties, Construction and Building Materials. 140 (2017), pp. 36-42.
10.1016/j.conbuildmat.2017.02.107
9
A.F. Angelin, R.C. Cecche Lintz, L.A. Gachet-Barbosa, and W.R. Osório, The effects of porosity on mechanical behavior and water absorption of an environmentally friendly cement mortar with recycled rubber, Construction and Building Materials. 151 (2017), pp. 534-545.
10.1016/j.conbuildmat.2017.06.061
10
J.N. Eiras, F. Segovia, M.V. Borrachero, J. Monzó, M. Bonilla, and J. Payá, Physical and mechanical properties of foamed Portland cement composite containing crumb rubber from worn tires, Materials and Design. 59 (2014), pp. 550-557.
10.1016/j.matdes.2014.03.021
11
N. Oikonomou and S. Mavridou, Improvement of chloride ion penetration resistance in cement mortars modified with rubber from worn automobile tires, Cement ' Concrete Composites. 31 (2009), pp. 403-407.
10.1016/j.cemconcomp.2009.04.004
12
T. Uygunoǧlu and I.B. Topçu, The role of scrap rubber particles on the drying shrinkage and mechanical properties of self-consolidating mortars, Construction and Building Materials. 24 (2010), pp. 1141-1150.
10.1016/j.conbuildmat.2009.12.027
13
M. Turki, E. Bretagne, M.J. Rouis, and M. Quéneudec, Microstructure, physical and mechanical properties of mortar–rubber aggregates mixtures, Construction and Building Materials. 23 (2009), pp. 2715-2722.
10.1016/j.conbuildmat.2008.12.019
14
D. Pedro, J. de Brito, and R. Veiga, Mortars made with fine granulate from shredded tires, Journal of Materials in Civil Engineering. 25(4) (2013), pp. 519-529.
10.1061/(ASCE)MT.1943-5533.0000606
15
NA 442, Cements: Composition, specifications and conformity criteria for common cements. Ministère de l'Industrie et des Mines, Algeria, (2013).
16
EN 197-1, Cement - Part 1: composition, specifications and conformity criteria for common cements. European Committee for Standardization (CEN), (2012).
17
EN 196-1, Methods of testing cement - Part 1: determination of strength. European Committee for Standardization (CEN), (2016).
18
EN 12350-2, Testing fresh concrete - Part 2: slump test. European Committee for Standardization (CEN), (2012).
19
A. Benazzouk, O. Douzane, K. Mezreb, B. Laidoudi, and M. Quéneudec, Thermal conductivity of cement composites containing rubber waste particles: Experimental study and modeling, Construction and Building Materials. 22 (2008), pp. 573-579.
10.1016/j.conbuildmat.2006.11.011
20
Technical days AFPC-AFREM, Durabilité des bétons, méthodes recommandées pour la mesure des grandeurs associées à la durabilité des bétons. National Institute of Applied Sciences (INSA) - Laboratory Materials and Durability of Constructions (LMDC), Toulouse, France, (1997).
21
EN 12504-4, Testing concrete - Part 4: determination of ultrasonic pulse velocity. European Committee for Standardization (CEN), (2005).
22
A.M. Neville and J.J. Brooks, Concrete technology. Longman Scientific ' Technical, (1987).
23
I.L. Tchetgnia Ngassam, Durabilité des réparations des ouvrages d'art en béton. PhD Thesis, Doctoral school of sciences, engineering and environment, Université Paris-Est (UPE), (2013).
24
EN 998-1, Specification for mortar for masonry - Part 1: rendering and plastering mortar. European Committee for Standardization (CEN), (2016).
Information
  • Publisher :Sustainable Building Research Center (ERC) Innovative Durable Building and Infrastructure Research Center
  • Publisher(Ko) :건설구조물 내구성혁신 연구센터
  • Journal Title :International Journal of Sustainable Building Technology and Urban Development
  • Volume : 10
  • No :1
  • Pages :2-14
  • Received Date : 2019-01-25
  • Accepted Date : 2019-03-20
Journal Informaiton International Journal of Sustainable Building Technology and Urban Development International Journal of Sustainable Building Technology and Urban Development
  • scopus
  • NRF
  • KOFST
  • KISTI Current Status
  • KISTI Cited-by
  • crosscheck
  • orcid
  • open access
  • ccl
Journal Informaiton Journal Informaiton - close