All Issue

2019 Vol.10, Issue 4 Preview Page

General Article

31 December 2019. pp. 205-215
Abstract
References
1
V. G. Papadakis and V. G. Costas, A reaction engineering approach to the problem of concrete carbonation. AIChE Journal 35(10) (1989), pp. 1639-1650.
10.1002/aic.690351008
2
V. G. Papadakis, V. G. Costas, and N. F. Michael, Experimental investigation and mathematical modeling of the concrete carbonation problem. Chemical Engineering Science 46(5-6) (1991), pp. 1333-1338.
10.1016/0009-2509(91)85060-B
3
Korea Meteorological Administration, Report of global atmosphere watch 2018. Korea Meteorological Administration. (2019).
4
N.R. Buenfeld, N.M. Hassanein, and A.J. Jones, An artificial neural network for predicting carbonation depth in concrete structures. Manuals and Reports on Engineering Practice. (1998), pp. 77-117.
5
W. Z. Taffese and E. Sistonen, Machine learning for durability and service-life assessment of reinforced concrete structures: Recent advances and future directions. Automation in Construction. 77 (2017), pp. 1-14.
10.1016/j.autcon.2017.01.016
6
R. Xiang, Prediction of concrete carbonation depth based on support vector regression. 2009 Third International Symposium on Intelligent Information Technology Application. IEEE. 3 (2009), pp. 172-175.
10.1109/IITA.2009.469
7
N. BU, G. YANG, and H. ZHAO, Prediction of concrete carbonization depth based on DE-BP neural network. 2009 Third International Symposium on Intelligent Information Technology Application. IEEE. 3 (2009), pp. 240-243.
10.1109/IITA.2009.252
8
Y. Liu, S. Zhao and C. Yi, The forecast of carbonation depth of concrete based on RBF neural network. 2008 Second International Symposium on Intelligent Information Technology Application. IEEE. 3 (2008), pp. 544-548.
10.1109/IITA.2008.402PMC2562431
9
W. Z. Taffese, E. Sistonen, and J. Puttonen, Prediction of Concrete Carbonation Depth using Decision Trees. Proc. 23rd Eur. Symp. Artif. Neural Networks, Comput. Intell. Mach. Learn. ESANN. (2015), pp. 415-420.
10
W. Z. Taffese, F. Al-Neshawy, E. Sistonen, and M. Ferreira, Optimized neural network based carbonation prediction model. In International Symposium Non-Destructive Testing in Civil Engineering, NDTCE 2015, (2015), pp. 1074-1083
11
C. Lu and R. Liu, Predicting carbonation depth of prestressed concrete under different stress states using artificial neural network. Advances in Artificial Neural Systems. 2009, (2009).
10.1155/2009/193139
12
S. J. Kwon, Service Life Evaluation of RC Column Exposed to Carbonation Considering Time-dependent Crack Pattern, Journal of the Korean Recycled Construction Resources Institute, 4(1) (2016), pp. 10-18.
10.14190/JRCR.2016.4.1.010
13
Korean Standards, KS F 2584 Standard test method for accelerated carbonation of Concrete. Korea Industrial Standards, Korean Standards & Certification Information Center. (2015), pp. 1-4.
14
阿部道彦, 桝田佳寛, 田中斉, 柳啓, 和泉意登志, and 友沢史紀, コンクリートの促進中性化試験法の評価に関する研究. 日本建築学会構造系論文報告集. 409 (1990), pp. 1-10.
15
Architectural Institute of Japan, Recommendations for durability design and construction practice of reinforced concrete buildings. 2nd ed. Tokyo(Japan): Architectural Institute of Japan. (2016), pp. 98-126.
16
Architectural Institute of Japan, 鐵筋コンクリート造構造物の 耐久性設計施工指針 (案)·同解說, (2004).
17
岸谷孝一, 樫野紀元, コンクリート中の鉄筋の腐食に関する研究: その1 コンクリーの中性化深さが鉄筋腐食に及ぼす影響について. 日本建築学会論文報告集. 283 (1979), pp. 11-16.
18
S. Haykin, Neural networks: a comprehensive foundation. Prentice Hall PTR, 1994.
19
R. Hecht-Nielsen, Theory of the backpropagation neural network. Neural networks for perception. Academic Press. (1992), pp. 65-93.
10.1016/B978-0-12-741252-8.50010-8
20
S. L. Hung and H. Adeli, A model of perceptron learning with a hidden layer for engineering design. Neurocomputing, 3(1) (1991), pp. 3-14.
10.1016/0925-2312(91)90016-5
21
L. Deng and Y. Dong Yu, Deep learning: methods and applications. Foundations and Trends® in Signal Processing 7.3-4 (2014), pp. 19-33.Y. Freund, and D. Haussler, Unsupervised learning of distributions on binary vectors using two layer networks. Advances in neural information processing systems. (1992), pp. 912-919.
10.1561/2000000039
22
Bengio, Yoshua. Learning deep architectures for AI. Foundations and trends® in Machine Learning 2.1 (2009), pp, 1-127.
10.1561/2200000006
23
N. Buduma and L. Nicholas, Fundamentals of deep learning: Designing next-generation machine intelligence algorithms, O'Reilly Media, Inc. (2017).
24
C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, Activation functions: Comparison of trends in practice and research for deep learning. arXiv preprint arXiv:1811.03378, (2018)
25
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1) (2014), pp. 1929-1958.
26
D. P. Kingma and Ba. Jimmy, Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, (2014).
27
Nowlan, Steven J., and Geoffrey E. Hinton. Simplifying neural networks by soft weight-sharing. Neural computation 4.4 (1992), pp. 473-493.
10.1162/neco.1992.4.4.473
Information
  • Publisher :Sustainable Building Research Center (ERC) Innovative Durable Building and Infrastructure Research Center
  • Publisher(Ko) :건설구조물 내구성혁신 연구센터
  • Journal Title :International Journal of Sustainable Building Technology and Urban Development
  • Volume : 10
  • No :4
  • Pages :205-215
  • Received Date : 2019-12-11
  • Accepted Date : 2019-12-24
Journal Informaiton International Journal of Sustainable Building Technology and Urban Development International Journal of Sustainable Building Technology and Urban Development
  • scopus
  • NRF
  • KOFST
  • KISTI Current Status
  • KISTI Cited-by
  • crosscheck
  • orcid
  • open access
  • ccl
Journal Informaiton Journal Informaiton - close