All Issue

2023 Vol.14, Issue 4 Preview Page

General Article

30 December 2023. pp. 500-518
Abstract
References
1
Y. Sokienah, Aspects of Sustainability in the Design Elements of Traditional Jordanian Houses. Civ. Eng. Archit. 8(6) (2020). DOI: 10.13189/cea.2020. 080604. 10.13189/cea.2020.080604
2
A. Bekleyen and N. Dalk, Design with Climate-What Can We Learn from the past to Cope with Climate in Terms of Design Strategy and Usage Style of Courtyard Houses?. Middle-East J. Sci. Res. 11(3) (2012), pp. 357-366.
3
A. Bekleyen and Y. Meli̇koğlu, An investigation on the thermal effects of windcatchers. J. Build. Eng. 34 (2021). DOI: 10.1016/j.jobe.2020.101942. 10.1016/j.jobe.2020.101942
4
I. Christov, V. Krystev, R. Viliyan, and A. A. Gad, Eds., Advances in Scientific Research: Engineering and Architecture. 2020, Sofia: ST. Kliment Ohridski University Press. pp. 429-465.
5
A. Sadat, E. Zarghami, and A. Khaki, A comparative study of sustainable architecture and compliance with the vernacular architecture of traditional houses in Iranian-Islamic. J. Sustain. Archit. Urban Des. 3(1) (2016). DOI: 20.1001.1.25886274. 1394.3.1.2.2.
6
H. Girardet, M. Mendonça, and W.F. Council, A renewable world: energy, ecology, equality: a report for the World Future Council. 2009, Totnes, Devon: Green Books.
7
R. Ssaber and B. Daryayelaal, An Overview of the Relationship between Culture and Energy Sustainability in Traditional Iranian Architecture. Bull. Environ. Pharmacol. Life Sci. 4(1) (2015), pp. 44-49.
8
B. Wen, N. Musa, C.C. Onn, S. Ramesh, L. Liang, and W. Wang, Evolution of sustainability in global green building rating tools. J. Clean. Prod. 259 (2020). DOI: 10.1016/j.jclepro.2020.120912. 10.1016/j.jclepro.2020.120912
9
A.B. Avcı and Ş.G. Beyhan, Revealing the climate-responsive strategies of traditional houses of Urla. İzmir, Int. J. Sustain. Build. Technol. Urban Dev. (2023). DOI: 10.22712/SUSB.20230003.
10
N. Al Shaikhli and I. Al Shafie, The Effect of Natural Energy Sources on the Sustainable Form of Vernacular Architecture. Int. J. Adv. Res. Eng. Technol. (2020). DOI: 10.34218/IJARET.11.6.2020.034.
11
Z. Kibrit, Damascene House. 2000, Damascuse: Zakariya Kibrit.
12
UNESCO World Heritage Centre [Online], 2022. Available at: https://whc.unesco.org [Accessed 27/ 09/2023].
13
A. Al Homsi, Rawae' mn alamara alislamiya fi suria [Masterpieces of Arab-Islamic architecture in Syria]. 1982, Damascus: Ministry of Awqaf in Syria.
14
CORPUS Levant, Traditional Syrian Architecture. 2004, France: European Commission.
15
H. Al Sawaf, Albyt aldemshqy kanz al'emarh [Damascene house, Architecture treasure]. 2017, Damascuse: Dar Al Maktabi.
16
H. Salkini, L. Greco, and R. Lucente, Towards Adaptive Residential Buildings Traditional and Contemporary Scenarios in Bioclimatic Design (the Case of Aleppo), Procedia Engineering. (2017). DOI: 10.1016/j.proeng.2017.04.268. 10.1016/j.proeng.2017.04.268
17
L. Kandakji, Design Transformations of Residential Architecture in the Syrian Cities since Independence Till Now, PhD Thesis, University of Aleppo, 2013.
18
O. Al-Jayyousi, Islam and Sustainable Development: New Worldviews. 2012, Routledge.
19
G. Brundtland, Report of the World Commission on Environment and Development: Our Common Future, United Nations General Assembly document A/42/427 [Online], 2022. Available at: https://sustainabledevelopment.un.org/content/documents/5987our-common-future.pdf. [Accessed 25/09/2023].
20
W. Al Ghamry, N. Abo Muslim, and B. Mahdy, A Comparative Study of LEED Standards and Principles of Sustainability in Islamic Architecture. J. Archit. Arts Humanist. Sci. (2018). DOI: 10.12816/ 0045761.
21
T. Mattinzioli, M. Sol-Sánchez, B. Moreno, J. Alegre, and G. Martínez, Sustainable building rating systems: A critical review for achieving a common consensus. Crit. Rev. Environ. Sci. Technol. 51(5) (2020). DOI: 10.1080/10643389.2020.1732781. 10.1080/10643389.2020.1732781
22
Worldgbc, Sustainable Building Certifications - World Green Building Council [Online], 2023. Available at: https://worldgbc.org/sustainable-building-certifications. [Accessed 13/09/2023].
23
German Sustainable Building Council, DGNB [Online], 2020. Available at: https://static.dgnb.de/ fileadmin/dgnb-system/en/buildings/new-construction/criteria/Evaluation_and_structure_of_the_DGNB_system.pdf. [Accessed 19/09/2023].
24
Iranian Sustainable Building Scientific Association, IGBRS [Online], 2020. Available at: https://www. irsbsa.org/سیستم-سرو-سبز-ایران-igbrs. [Accessed 19/09/2023].
25
U.S. Green Building Council, LEED [Online]. Available at: https://www.usgbc.org/leed. [Accessed 19/09/2023].
26
A. Ferreira, M.D. Pinheiro, J. de Brito, and R. Mateus, A critical analysis of LEED, BREEAM and DGNB as sustainability assessment methods for retail buildings. Journal of Building Engineering. 66 (2023). DOI: 10.1016/j.jobe.2023. 105825. 10.1016/j.jobe.2023.105825
27
D.T. Doan, A. Ghaffarianhoseini, N. Naismith, T. Zhang, A. Ghaffarianhoseini, and J. Tookey, A critical comparison of green building rating systems. Build. Environ. 123 (2017). DOI: 10.1016/J.BUIL DENV.2017.07.007. 10.1016/j.buildenv.2017.07.007
28
B. Edwards, Courtyard Housing: Past, Present and Future. 2006, New York, NY10016: Taylor & Francis Group.
29
Y. Waziri, al amarh al islamiya wa al by'eh [Islamic architecture and environment]. 2004, Kuwait: National Council for Culture, Arts and Literature.
30
M.S.S. Al-Zubaidi and B.R. Shahin, Sustainability Principals of Traditional Architecture in the Islamic Perception. Iraqi J. Archit. Plan. 7(12) (2008), pp. 74-91.
31
K. Mousli and G. Semprini, Thermal performances of traditional houses in dry hot arid climate and the effect of natural ventilation on thermal comfort: A case study in Damascus. Energy Procedia. 78 (2015). DOI: 10.1016/j.egypro.2015.11.661. 10.1016/j.egypro.2015.11.661
32
M.A. Zakaria and T. Kubota, Environmental Design Consideration for Courtyards in Residential Buildings in Hot-humid Climates: A Review. Int. J. Built Environ. Sustain. 1(1) (2014). DOI: 10. 11113/ijbes.v1.n1.7. 10.11113/ijbes.v1.n1.7
33
H. Fathy, W. Shearer, and A.A.-R. Sultan, Natural Energy and Vernacular Architecture. Principles and Examples with Reference to Hot Arid Climates. 1986, Chicago: University Of Chicago Press.
34
B.P. Sirtuli, F.G. Costalonga, C.E. de Alvarez, and E.A. Nico-Rodrigues, Thermal performance as a parameter of choice of materials: Brazilian Antarctic Station. Int. J. Sustain. Build. Technol. Urban Dev. 8(2) (2017). DOI: 10.12972/SUSB. 20170024. 10.12972/susb.20170024
35
B. Givoni, Climate considerations in building and urban design. 1988, New York: John Wiley.
36
L.M. de O. da Costa, F.R.S. Lima, M.A. Maciel, and R.D. Oliveira, Cooling energy-saving potential of a green roof in Brazilian climates. Int. J. Sustain. Build. Technol. Urban Dev. 13(4) (2022). DOI: 10.22712/SUSB.20220031.
37
A.S. Muhaisen, Shading Potential of Semi-spherical Roof Dome, with Special Reference to Gaza Strip. J. Archit. Plan. 23(2) (2011), pp. 31-40.
38
A.H. Chohan and J. Awad, Wind Catchers: An Element of Passive Ventilation in Hot, Arid and Humid Regions, a Comparative Analysis of Their Design and Function. Sustainability. 14(17) (2022). DOI: 10.3390/su141711088. 10.3390/su141711088
39
A. Kamyab, M. Mahmoodi Zarandi, and M. Nikpour, Investigating the Effect of Different Proportions of Iwan and Window Area of Adjacent Room on Cooling/Heating Load and Energy Consumption in Central Courtyard Model in Yazd. Iran, J. Energy Environ. 14(2) (2023). DOI: 10. 5829/IJEE.2023.14.02.04. 10.5829/IJEE.2023.14.02.04
40
H. Eskandari, M. Saedvandi, and M. Mahdavinejad, The impact of Iwan as a traditional shading device on the building energy consumption. Buildings. 8(1) (2017). DOI: 10.3390/buildings8010003. 10.3390/buildings8010003
41
D.R. Lightfoot, Syrian qanat Romani: History, ecology, abandonment. J. Arid Environ. 33(3) (1996). DOI: 10.1006/jare.1996.0068. 10.1006/jare.1996.0068
42
B. Norton, Harnessing Solar Heat, 2014. Dordrecht: Springer. 10.1007/978-94-007-7275-5
43
R.V. Ralegaonkar and R. Gupta, Review of intelligent building construction: A passive solar architecture approach. Renew. Sustain. Energy Rev. 14(8) (2010). DOI: 10.1016/j.rser.2010.04.016. 10.1016/j.rser.2010.04.016
44
K. Mousli and G. Semprini, Passive systems in traditional houses in Middle East areas: solutions and effects of natural ventilation. IOP Conference Series: Materials Science and Engineering. (2019). DOI: 10.1088/1757-899x/609/3/032056. 10.1088/1757-899X/609/3/032056
45
S. Gangrade and A. Sharma, Study of thermal comfort in naturally ventilated educational buildings of hot and dry climate - A case study of Vadodara, Gujarat, India. Int. J. Sustain. Build. Technol. Urban Dev. 13(1) (2022). DOI: 10.22712/SUSB. 20220010.
Information
  • Publisher :Sustainable Building Research Center (ERC) Innovative Durable Building and Infrastructure Research Center
  • Publisher(Ko) :건설구조물 내구성혁신 연구센터
  • Journal Title :International Journal of Sustainable Building Technology and Urban Development
  • Volume : 14
  • No :4
  • Pages :500-518
  • Received Date : 2023-10-26
  • Accepted Date : 2023-12-14
Journal Informaiton International Journal of Sustainable Building Technology and Urban Development International Journal of Sustainable Building Technology and Urban Development
  • scopus
  • NRF
  • KOFST
  • KISTI Current Status
  • KISTI Cited-by
  • crosscheck
  • orcid
  • open access
  • ccl
  • isc
Journal Informaiton Journal Informaiton - close