All Issue

2023 Vol.14, Issue 4 Preview Page

General Article

30 December 2023. pp. 488-499
Abstract
References
1
S. Łukasiewicz, M. Czeczelewski, A. Forma, J. Baj, R. Sitarz, and A. Stanisławek, Breast cancer-epidemiology, risk factors, classification, prognostic markers, and current treatment strategies-an updated review. Cancers. 13(17) (2021), 4287. 10.3390/cancers1317428734503097PMC8428369
2
American Cancer Society. (n.d.). Stages of breast cancer [Online], 2021. Available at: https://www. cancer.org/cancer/types/breast-cancer/understanding-a-breast-cancer-diagnosis/stages-of-breast-cancer.html [Accessed 20/10/2023].
3
K.C. Oeffinger, E.T. Fontham, R. Etzioni, A. Herzig, J.S. Michaelson, Y.C.T. Shih, L.C. Walter, T.R. Church, C.R. Flowers, S.J. LaMonte, A.M.D. Wolf, C. DeSantis, J. Lortet-Tieulent, K. Andrews, D. Manassaram-Baptiste, D. Sadlow, R.A. Smith, O.W. Brawley, and R. Wender, Breast cancer screening for women at average risk: 2015 guideline update from the American Cancer Society. JAMA. 314(15) (2015), pp. 1599-1614. 10.1001/jama.2015.1278326501536PMC4831582
4
D.A. Zebari, D.Q. Zeebaree, A.M. Abdulazeez, H. Haron, and H.N.A. Hamed, Improved threshold-based and trainable fully automated segmentation for breast cancer boundary and pectoral muscle in mammogram images. IEEE Access. 8 (2020), pp. 203097-203116. 10.1109/ACCESS.2020.3036072
5
K, Hossain, T. Sabapathy, M. Jusoh, S. Lee, K.S.A. Rahman, and M.R. Kamarudin, Negative Index Metamaterial-Based Frequency-Reconfigurable Textile CPW Antenna for Microwave Imaging of Breast Cancer [Online], 2022, February 18. Available at: https://scite.ai/reports/10.3390/s22041626 [Accessed 20/10/2023].
6
N. Alqurashi, A. Alotaibi, S. Bell, F. Lecky, and R. Body, Towards exploring current challenges and future opportunities relating to the prehospital triage of patients with traumatic brain injury: a mixed-methods study protocol [Online], 2023, March 1. Available at: https://scite.ai/reports/10.1136/bmjopen-2022-068555 [Accessed 15/10/2023].
7
M. Alsaffar, G. Alshammari, A. Alshammari, S. Aljaloud, T.S. Almurayziq, A.A. Hamad, V. Kumar, and A. Belay, Detection of Tuberculosis Disease Using Image Processing Technique [Online], 2021, December 3. Available at: https://scite.ai/reports/10.1155/2021/7424836 [Accessed 15/10/2023]. 10.1155/2021/7424836
8
A. Anaya-Isaza, L. Mera-Jimenez, J.M. Cabrera-Chavarro, L. Guachi-Guachi, D. Peluffo-Ordonez, and J.I. Rios-Patino, Comparison of current deep convolutional neural networks for the segmentation of breast masses in mammograms. IEEE Access. 9 (2021), pp. 152206-152225. 10.1109/ACCESS.2021.3127862
9
B.V. Divyashree and G.H. Kumar, Breast cancer mass detection in mammograms using gray difference weight and mser detector. SN Computer Science. 2 (2021), pp. 1-13. 10.1007/s42979-021-00452-8
10
S. Maqsood, R. Damaševičius, and R. Maskeliūnas, TTCNN: A breast cancer detection and classification towards computer-aided diagnosis using digital mammography in early stages. Applied Sciences. 12(7) (2022), 3273. 10.3390/app12073273
11
R. Ranjbarzadeh, S. Dorosti, S.J. Ghoushchi, A. Caputo, E.B. Tirkolaee, S.S. Ali, Z, Arshadi, and M. Bendechache, Breast tumor localization and segmentation using machine learning techniques: Overview of datasets, findings, and methods. Computers in Biology and Medicine. (2022), 106443. 10.1016/j.compbiomed.2022.10644336563539
12
X. Yang, R. Wang, D. Zhao, F. Yu, A.A. Heidari, Z. Xu, H. Chen, A.D. Algarni, H. Elmannai, and S. Xu, Multi-level threshold segmentation framework for breast cancer images using enhanced differential evolution. Biomedical Signal Processing and Control. 80(2) (2023), 104373. 10.1016/j.bspc.2022.104373
13
A. Juhong, B. Li, C.Y. Yao, C.W. Yang, D.W. Agnew, Y.L. Lei, X. Huang, W. Piyawattanametha, and Z. Qiu, Super-resolution and segmentation deep learning for breast cancer histopathology image analysis. Biomedical Optics Express. 14(1) (2023), pp. 18-36. 10.1364/BOE.46383936698665PMC9841988
14
J. Xing, X. Zhou, H. Zhao, H. Chen, and A.A. Heidari, Elite levy spreading differential evolution via ABC shrink-wrap for multi-threshold segmentation of breast cancer images. Biomedical Signal Processing and Control. 82 (2023), 104592. 10.1016/j.bspc.2023.104592
15
T. Mahmood, J. Li, Y. Pei, F. Akhtar, A. Imran, and K. U. Rehman, A Brief Survey on Breast Cancer Diagnostic With Deep Learning Schemes Using Multi-Image Modalities. in IEEE Access, 8 (2020), pp. 165779-165809. DOI: 10.1109/ACCESS. 2020.3021343. 10.1109/ACCESS.2020.3021343
16
H. Lee, S. Choi, and J. Jiao, Examining the COVID-19 effects on travel behavior using smart IoT sensors: A case study of smart city planning in Gangnam, Seoul. International Journal of Sustainable Building Technology and Urban Development. 12(4) (2021), pp. 347-362. DOI: 10.22712/susb.20210029.
17
V. Pathak, K. Singh, R.R. Chandan, S.K. Gupta, M. Kumar, S. Bhushan, and S. Jayaprakash, Efficient Compression Sensing Mechanism based WBAN System. Security and Communication Networks, Hindawi. Article ID 8468745. 2023 (2023), pp. 1-12. DOI: https://doi.org/10.1155/2023/8468745. 10.1155/2023/8468745
18
S. Kumar, M.K. Chaube, S.H. Alsamhi, S.K. Gupta, M. Guizani, R. Gravina, and G. Fortino, A Novel Multimodal Fusion Framework for Early Diagnosis and Accurate Classification of COVID-19 Patients Using X-ray Images and Speech Signal Processing Techniques. Computer Methods and Programs in Biomedicine. 226 (2022), 107109, pp. 1-13. DOI: https://doi.org/10.1016/j.cmpb.2022.107109. 10.1016/j.cmpb.2022.10710936174422PMC9465496
19
S. Kumar, R. Nagar, S. Bhatnagar, R. Vaddi, S.K. Gupta, M. Rashid, A.K. Bashir, and T. Alkhalifah, Chest X Ray and Cough Sample based Deep Learning Framework for Accurate Diagnosis of COVID-19. Computers and Electrical Engineering. 103 (2022), 108391. DOI: https://doi.org/10.1016/j.compeleceng.2022.108391.10.1016/j.compeleceng.2022.10839136119394PMC9472671
20
S. Kumar, S.K. Gupta, V. Kumar, M. Kumar, M.K. Chaube, and N.S. Naik, Ensemble Multimodal Deep Learning for Early Diagnosis and Accurate Classification of COVID-19. Computers and Electrical Engineering. 103 (2022), 108396, pp. 1-18. DOI: https://doi.org/10.1016/j.compeleceng.2022.108396. 10.1016/j.compeleceng.2022.10839636160764PMC9485428
21
S.H. Lee, H.Y. Kim, H.K. Shin, Y. Jang, and Y.H. Ahn, Introducing a model for evaluating concrete structure performance using deep convolutional neural network. International Journal of Sustainable Building Technology and Urban Development, 8(3) (2017), pp. 285-295. DOI: doi:10.12972/susb.20170027. 10.12972/susb.20170027
22
R. Shailendra, A. Jayapalan, S. Velayutham, A. Baladhandapani, A. Srivastava, S.K. Gupta, and M. Kumar, An IoT and Machine Learning based Intelligent System for the Classification of Therapeutic Plants. Neural Processing Letters. 54(5), pp. 1-29, 2022, DOI: 10.1007/s11063-022-10818-5. 10.1007/s11063-022-10818-5
23
A. Aggarwal, M. Chakradar, M.S. Bhatia, M. Kumar, T. Stephan, S.K. Gupta, S.H. Alsamhi, and H. AL-Dois, COVID-19 Risk Prediction for Diabetic PatientsUsing Fuzzy Inference System and Machine Learning Approaches. Journal of Healthcare Engineering. 2022 (2022), 4096950, pp. 1-10. DOI: https://doi.org/10.1155/2022/4096950. 10.1155/2022/409695035368915PMC8974235
24
V. Kumar, V. Pathak, N. Badal, P.S. Pandey, R. Mishra, and S.K. Gupta, Complex Entropy based Encryption and Decryption Technique for Securing Medical Images. Multimedia Tools and Applications, An International Journal. (2022), pp. 1-19. 10.1007/s11042-022-13546-z35912061PMC9314533
25
S.H. Alsamhi, F.A. Almalki, H. AL-Dois, A.V. Shvetsov, M.S. Ansari, A. Hawbani, S.K. Gupta, and B. Lee, Multi-Drone Edge Intelligence and SAR Smart Wearable Devices for Emergency Communication. Wireless Communications and Mobile Computing. (2021), 6710074, pp. 1-12. DOI: https://doi.org/10.1155/2021/6710074. 10.1155/2021/6710074
26
A. Mishra and S.K. Gupta, Intelligent Classification of Coal Seams Using Spontaneous Combustion Susceptibility in IoT Paradigm. International Journal of Coal Preparation and Utilization. (2023), pp. 1-23. DOI: https://doi.org/10.1080/19392699.2023.2217747. 10.1080/19392699.2023.2217747
27
A. Alsharef, K. Aggarwal, M. Kumar, and A. Mishra, Review of ML and AutoML solutions to forecast timeseries data. Archives of Computational Methods in Engineering. 29(7) (2022), pp. 5297-5311. DOI: https://doi.org/10.1007/s11831-022-09765-0. 10.1007/s11831-022-09765-035669518PMC9159649
28
A. Khan, S. Gupta, and S.K. Gupta, Emerging UAV Technology for Disaster Detection, Mitigation, Response, and Preparedness. Journal of Field Robotics. 39(6) (2022), pp. 905-955, DOI: https:// doi.org/10.1002/rob.22075. 10.1002/rob.22075
29
R. Vrieze and H.C. Moll, An analytical approach towards sustainability-centered guidelines for Dutch primary school building design. International Journal of Sustainable Building Technology and Urban Development. 8(2) (2017), pp. 93-124. DOI: 10.12972/susb.20170009. 10.12972/susb.20170009
30
N. Jha, D. Prashar, M. Rashid, S.K. Gupta, and R.K. Saket, Electricity Load Forecasting and Feature Extraction in Smart Grid Using Neural Networks. Computers & Electrical Engineering. 96 (2021), Part A, 107479, pp. 1-12, (SCIE, IF=4.3). DOI: https://doi.org/10.1016/j.compeleceng.2021.107479. 10.1016/j.compeleceng.2021.107479
31
V.D.A. Kumar, S. Sharmila, A. Kumar, A.K. Bashir, M. Rashid, S.K. Gupta, and W.S. Alnumay, A Novel Solution for Finding Postpartum Haemorrhage using Fuzzy Neural Techniques. Neural Computing and Applications. (2021), pp. 1-14. 10.1007/s00521-020-05683-z
32
S.K. Gupta and R.K. Saket, Routing Protocols in Mobile Ad-hoc Networks. Special issue on Electronics, Information and Communication Engineering, International Journal of Computer Applications, USA, ISBN: 978-93-80865-63-9, 0ICEICE(4) (2011), pp. 24-27.
33
V. Sharma, Nillmani, S.K. Gupta, and K.K. Shukla, Deep learning models for tuberculosis detection and infected region visualization in chest X-ray images. Intelligent Medicine. (2023). DOI: https://doi.org/10.1016/j.imed.2023.06.001. 10.1016/j.imed.2023.06.001
34
I. Sharma, S.K. Gupta, A. Mishra, and S. Askar, Synchronous Federated Learning Based Multi Unmanned Aerial Vehicles for Secure Applications. Scalable Computing: Practice and Experience. 24(3) (2023), pp. 191-201. DOI: https://doi.org/10.12694/scpe.v24i3.2136.10.12694/scpe.v24i3.2136
35
S. Mondal, M. Shafi, S. Gupta, and S.K.Gupta, Blockchain based Secure Architecture for Electronic Healthcare Record Management. GMSARN International Journal. 16(4) (2022), pp. 413-426.
36
T. Nagalakshmi, Breast Cancer Semantic Segmentation for Accurate Breast Cancer Detection with an Ensemble Deep Neural Network. Neural Processing Letters. 54 (2022), pp. 5185-5198. DOI: https://doi.org/10.1007/s11063-022-10856-z. 10.1007/s11063-022-10856-z
37
M. Moghbel, C. Yee Ooi, N. Ismail, Y. Wen Hau, and N. Memari, A review of breast boundary and pectoral muscle segmentation methods in computer-aided detection/diagnosis of breast mammography. Artificial Intelligence Review. 53 (2020), pp. 1873-1918. DOI: https://doi.org/10.1007/s10462-019-09721-8. 10.1007/s10462-019-09721-8
38
V.A. Chinnasamy and D.R. Shashikumar, Breast cancer detection in mammogram image with segmentation of tumour region. Int. J. Medical Engineering and Informatics. 12(1) (2020). 10.1504/IJMEI.2020.105658
Information
  • Publisher :Sustainable Building Research Center (ERC) Innovative Durable Building and Infrastructure Research Center
  • Publisher(Ko) :건설구조물 내구성혁신 연구센터
  • Journal Title :International Journal of Sustainable Building Technology and Urban Development
  • Volume : 14
  • No :4
  • Pages :488-499
  • Received Date : 2023-10-20
  • Accepted Date : 2023-11-07
Journal Informaiton International Journal of Sustainable Building Technology and Urban Development International Journal of Sustainable Building Technology and Urban Development
  • scopus
  • NRF
  • KOFST
  • KISTI Current Status
  • KISTI Cited-by
  • crosscheck
  • orcid
  • open access
  • ccl
Journal Informaiton Journal Informaiton - close