All Issue

2023 Vol.14, Issue 4

General Article

30 December 2023. pp. 437-454
V. Malik, S. Manoranjan, R.A. Imam, and P. Priyansha, Cement industry of India: Outlook and challenges. 2023. Infomerics Valuation And Rating Pvt. Ltd. SEBI REGISTERED / RBI ACCREDITED / NSIC EMPANELLED CREDIT RATING AGENCY, Industry Outlook.
R. Baidya, S.K. Ghosh, and U.V. Parlikar, Co-processing of Industrial Waste in Cement Kiln - A Robust System for Material and Energy Recovery. Procedia Environmental Sciences. 31 (2016), pp. 309-317. DOI: 10.1016/j.proenv.2016.02.041. 10.1016/j.proenv.2016.02.041
M. Garside, Worldwide industrial sand and gravel production by country 2020, 2020(212), pp. 2020-2021 [Online], 2021. Available at: https://www. [Accessed 20/01/2023].
P.K. Mehta and H. Meryman, Tools for reducing carbon emissions due to cement consumption, STRUCTURE magazine, no. January, pp. 11-15 [Online], 2009. Available at: [Accessed 02/12/2022].
C. Chen, G. Habert, Y. Bouzidi, and A. Jullien, Environmental impact of cement production: detail of the different processes and cement plant variability evaluation. Journal of Cleaner Production. 18(5) (2010), pp. 478-485. DOI: 10.1016/j.jclepro. 2009.12.014. 10.1016/j.jclepro.2009.12.014
K.S. Devi, V.V. Lakshmi, and A. Alakanandana, Impacts of Cement Industry on Environment-an Overview. Asia Pacific Journal of Research ISSN, no. February, pp. 2347-4793 [Online], 2017. Available at: [Accessed 02/07/2023].
R. Kim, S. Roh, and H. Kim, Investigation of relationship between carbon emission and building energy performance index for carbon neutrality. International Journal of Sustainable Building Technology and Urban Development. 14(3) (2023), pp. 426-433. DOI: 10.22712/susb.20230032.
A.K. Mishra, Quantifying the impact of global warming on precipitation patterns in India. Meteorological Applications. 26(1) (2019), pp. 153-160. DOI: 10.1002/met.1749. 10.1002/met.1749
J. Thaker, N. Smith, and A. Leiserowitz, Global Warming Risk Perceptions in India. Risk Analysis. 40(12) (2020), pp. 2481-2497. DOI: 10.1111/risa.13574. 10.1111/risa.1357432790198
M.B. Ali, R. Saidur, and M.S. Hossain, A review on emission analysis in cement industries. Renewable and Sustainable Energy Reviews. 15(5) (2011), pp. 2252-2261. DOI: 10.1016/j.rser.2011.02.014. 10.1016/j.rser.2011.02.014
Z. He, X. Zhu, J. Wang, M. Mu, and Y. Wang, Comparison of CO2 emissions from OPC and recycled cement production. Construction and Building Materials. 211 (2019), pp. 965-973. DOI: 10.1016/j.conbuildmat.2019.03.289. 10.1016/j.conbuildmat.2019.03.289
G. Habert and N. Roussel, Study of two concrete mix-design strategies to reach carbon mitigation objectives. Cement and Concrete Composites. 31(6) (2009), pp. 397-402. DOI: 10.1016/j.cem concomp.2009.04.001. 10.1016/j.cemconcomp.2009.04.001
G.U. Fayomi, S.E. Mini, O.S.I. Fayomi, and A.A. Ayoola, Perspectives on environmental CO2 emission and energy factor in Cement Industry. IOP Conference Series: Earth and Environmental Science. 331(1) (2019). DOI: 10.1088/1755-1315/331/1/012035. 10.1088/1755-1315/331/1/012035
N. Mohamad, K. Muthusamy, and H.N. Ruslan, A Review on fresh concrete, thermal conductivity, and permeability properties of concrete containing cockle shell. International Journal of Sustainable Building Technology and Urban Development. 13(1) (2022), pp. 11-22. DOI: 10.22712/susb.20220003.
UN Environment Programme (UNEP), International declaration on cleaner production. 1989.
J. Fresner, Cleaner production as a means for effective environmental management. Journal of Cleaner Production. 6(3-4) (1998), pp. 171-179. DOI: 10.1016/s0959-6526(98)00002-x. 10.1016/S0959-6526(98)00002-X
UN Environment Programme (UNEP), Environmental agreements and cleaner production. 2006.
E. Batuecas, I. Ramón-Álvarez, S. Sánchez-Delgado, and M. Torres-Carrasco, Carbon footprint and water use of alkali-activated and hybrid cement mortars. Journal of Cleaner Production. 319(March) (2021). DOI: 10.1016/j.jclepro.2021.128653. 10.1016/j.jclepro.2021.128653
S. Adapa, Indian smart cities and cleaner production initiatives - Integrated framework and recommendations. Journal of Cleaner Production. 172 (2018), pp. 3351-3366. DOI: 10.1016/j.jclepro. 2017.11.250. 10.1016/j.jclepro.2017.11.250
F.J. Gomes da Silva and R.M. Gouveia, Practices on Cleaner Production and Sustainability. 2020. Cleaner Production, pp. 247-280, Springer, Cham. DOI: 10.1007/978-3-030-23165-1_7
R.A. Luken and J. Navratil, A programmatic review of UNIDO/UNEP national cleaner production centres. Journal of Cleaner Production. 12(3) (2004), pp. 195-205. DOI: 10.1016/S0959-6526(03)00102-1. 10.1016/S0959-6526(03)00102-1
M. Muchie, Are the UN programmes of national cleaner production centres necessary for introducing cleaner production practices in industry?. Science and Public Policy. 27(5) (2000), pp. 375-385. DOI: 10.3152/147154300781781788. 10.3152/147154300781781788
H. Hamada, A. Alattar, B. Tayeh, F. Yahaya, and B. Thomas, Effect of recycled waste glass on the properties of high-performance concrete: A critical review. Case Studies in Construction Materials. 17(May) (2022), e01149. DOI: 10.1016/j.cscm. 2022.e01149. 10.1016/j.cscm.2022.e01149
S. Roh, M. Seong, H. Kim, and R. Kim, The use of metakaolin as a supplementary cementitious material to reduce the environmental impacts of ready-mixed concrete. International Journal of Sustainable Building Technology and Urban Development. 14(3) (2023), pp. 418-425. DOI: 10.22712/susb.20230031.
R.J. Sldozian, A.J. Hamad, Z.H. Al-Saffar, A.V. Burakova, and T.A. Grigorevich, Cement mortar reinforced by date palm fibers and inclusion metakaolin. International Journal of Sustainable Building Technology and Urban Development. 14(3) (2023), pp. 348-360. DOI: 10.22712/susb.20230026.
R. Gowtham, S. Manikanda Prabhu, M. Gowtham, and R. Ramasubramani, A Review On Utilization Of Waste Glass In Construction Field. IOP Conference Series: Materials Science and Engineering. 1130(1) (2021), 012010. DOI: 10.1088/1757-899x/1130/1/012010. 10.1088/1757-899X/1130/1/012010
A. David, Y.D. Thangavel, and R. Sankriti, Recover, recycle and reuse: An efficient way to reduce the waste. International Journal of Mechanical and Production Engineering Research and Development. 9(3) (2019), pp. 31-42. DOI: 10. 24247/ijmperdjun20194. 10.24247/ijmperdjun20194
R. Stefanini, G. Borghesi, A. Ronzano, and G. Vignali, Plastic or glass: a new environmental assessment with a marine litter indicator for the comparison of pasteurized milk bottles. International Journal of Life Cycle Assessment. 26(4) (2021), pp. 767-784. DOI: 10.1007/s11367-020-01804-x. 10.1007/s11367-020-01804-x
W. Ferdous, A. Manalo, R. Siddique, P. Mendis, Y. Zhuge, H.S. Wong, W. Lokuge, T. Aravinthan, and P. Schubel, Recycling of landfill wastes (tyres, plastics and glass) in construction - A review on global waste generation, performance, application and future opportunities. Resources, Conservation and Recycling. 173 (2021). DOI: 10.1016/ j.resconrec.2021.105745. 10.1016/j.resconrec.2021.105745
Heriyanto, F. Pahlevani, and V. Sahajwalla, From waste glass to building materials - An innovative sustainable solution for waste glass. Journal of Cleaner Production. 191 (2018), pp. 192-206. DOI: 10.1016/j.jclepro.2018.04.214. 10.1016/j.jclepro.2018.04.214
A.M. Matos and J.S. Coutinho, Waste Glass Powder in Cement: Macro and Micro Scale Study. Adv. Cem. Res. 28(7) (2016), pp. 423-432. DOI: 10.1680/jadcr.14.00025. 10.1680/jadcr.14.00025
D. Paul, K.R. Bindhu, A.M. Matos, and J. Delgado, Eco-friendly concrete with waste glass powder: A sustainable and circular solution. Construction and Building Materials. 355 (2022), 129217. DOI: 10.1016/j.conbuildmat.2022.129217. 10.1016/j.conbuildmat.2022.129217
A. Adesina and S. Das, Influence of glass powder on the durability properties of engineered cementitious composites. Construction and Building Materials. 242 (2020), 118199. DOI: 10.1016/ j.conbuildmat.2020.118199. 10.1016/j.conbuildmat.2020.118199
D. Patel, R.P. Tiwari, R. Shrivastava, and R.K. Yadav, Effective utilization of waste glass powder as the substitution of cement in making paste and mortar. Construction and Building Materials. 199 (2019), pp. 406-415. DOI: 10.1016/j.conbuildmat. 2018.12.017. 10.1016/j.conbuildmat.2018.12.017
Y. Jiang, T.-C. Ling, K.H. Mo, and C. Shi, A critical review of waste glass powder - Multiple roles of utilization in cement-based materials and construction products. Journal of Environmental Management. 242 (2019), pp. 440-449. DOI: 10.1016/J.JENVMAN.2019.04.098. 10.1016/j.jenvman.2019.04.09831071620
D. Paul and B. K.R., Strength, Durability and Bond Characteristics of Hybrid Glass Powder Concrete for Applying as an Overlay. Science & Technology Asia. 28(3) (2023), pp. 158-177.
IS 269: 2015, Indian Standard Ordinary Portland Cement-Specification, Bureau of Indian Standards (BIS) New Delhi.
IS 383: 2016, Coarse and fine aggregate for concrete-specification, Bureau of Indian Standards, New Delhi.
ASTM C143M-03: 2003, Standard Test Method for Slump of Hydraulic-Cement Concrete. ASTM International West Conshohocken, PA.
IS 10262: 2019, Concrete Mix Proportioning-Guidelines (Second Revision), Bureau of Indian Standards (BIS) New Delhi.
IS 456: 2005, Concrete, Plain and Reinforced, Bureau of Indian Standards (BIS) New Delhi.
ASTM C1585-04: 2007, Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes. ASTM International West Conshohocken, PA.
ASTM C1202: 2012, Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration. ASTM International West Conshohocken, PA.
A.N. Dancygier and E. Berkover, Cracking localization and reduced ductility in fiber-reinforced concrete beams with low reinforcement ratios. Engineering Structures. 111 (2016), pp. 411-424. DOI: 10.1016/j.engstruct.2015.11.046. 10.1016/j.engstruct.2015.11.046
R. Martins, R.N.F. Carmo, H. Costa, and E. Júlio, Flexural behavior of eco-efficient and ultra-high durability concrete beams. Construction and Building Materials. 236 (2020), 117546. DOI: 10.1016/j.conbuildmat.2019.117546. 10.1016/j.conbuildmat.2019.117546
H.C. Mertol, E. Baran, and H.J. Bello, Flexural behavior of lightly and heavily reinforced steel fiber concrete beams. Construction and Building Materials. 98 (2015), pp. 185-193. DOI: 10.1016/ j.conbuildmat.2015.08.032. 10.1016/j.conbuildmat.2015.08.032
S.A. Ashour, Effect of compressive strength and tensile reinforcement ratio on flexural behavior of high-strength concrete beams. Engineering Structures. 22(5) (2000), pp. 413-423. DOI: 10.1016/ S0141-0296(98)00135-7. 10.1016/S0141-0296(98)00135-7
M.S. Issa, I.M. Metwally, and S.M. Elzeiny, Influence of fibers on flexural behavior and ductility of concrete beams reinforced with GFRP rebars. Engineering Structures. 33(5) (2011), pp. 1754-1763. DOI: 10.1016/j.engstruct.2011.02.014. 10.1016/j.engstruct.2011.02.014
I.H. Yang, C. Joh, and B.S. Kim, Structural behavior of ultra high performance concrete beams subjected to bending. Engineering Structures. 32(11) (2010), pp. 3478-3487. DOI: 10.1016/j.engstruct. 2010.07.017. 10.1016/j.engstruct.2010.07.017
  • Publisher :Sustainable Building Research Center (ERC) Innovative Durable Building and Infrastructure Research Center
  • Publisher(Ko) :건설구조물 내구성혁신 연구센터
  • Journal Title :International Journal of Sustainable Building Technology and Urban Development
  • Volume : 14
  • No :4
  • Pages :437-454
  • Received Date : 2023-08-20
  • Accepted Date : 2023-12-19
Journal Informaiton International Journal of Sustainable Building Technology and Urban Development International Journal of Sustainable Building Technology and Urban Development
  • scopus
  • NRF
  • KISTI Current Status
  • KISTI Cited-by
  • crosscheck
  • orcid
  • open access
  • ccl
Journal Informaiton Journal Informaiton - close