All Issue

2018 Vol.9, Issue 3 Preview Page

General Article

30 September 2018. pp. 124-138
Abstract
References
1
F. Amini, N. Ghahramani, L. Saberfattahi, P. Soleimanpour, and M.Tavanpour, Iran and World Energy Facts and Figures. 2014, Tehran, Iran: Deputy for Power & Energy Affairs.
2
L.C. Ng, A.K. Persily, and S.J. Emmerich, IAQ and energy impacts of ventilation strategies and building envelope airtightness in a big box retail building, Building and Environment, 92 (2015), pp. 627-634.
10.1016/j.buildenv.2015.05.038
3
J. Jokisalo, J. Kurnitski, M. Korpi, T. Kalamees, and J. Vinha, Building leakage, infiltration, and energy performance analyses for Finnish detached houses, Building and Environment, 44(2) (2009), pp. 377-387.
10.1016/j.buildenv.2008.03.014
4
P. Brinks, O. Kornadt, and R. Oly, Air infiltration assessment for industrial buildings, Energy and Buildings, 86 (2015), pp. 663-676.
10.1016/j.enbuild.2014.10.040
5
T. Kalamees, Ü. Alev, and M. Pärnalaas, Air leakage levels in timber frame building envelope joints, Building and Environment, 116 (2017), pp. 121-129.
10.1016/j.buildenv.2017.02.011
6
F.R.d.A. Alfano, M. Dell’Isola, G. Ficco, and F. Tassini, Experimental analysis of air tightness in Mediterranean buildings using the fan pressurization method, Building and Environment, 53(Supplement C) (2012), pp. 16-25.
10.1016/j.buildenv.2011.12.017
7
J. Fernández-Agüera, S. Domínguez-Amarillo, J.J. Sendra, and R. Suárez, An approach to modelling envelope airtightness in multi-family social housing in Mediterranean Europe based on the situation in Spain, Energy and Buildings, 128(Supplement C) (2016), pp. 236-253.
10.1016/j.enbuild.2016.06.074
8
C.N. Bramiana, A.G. Entrop, and J.I.M. Halman, Relationships between Building Characteristics and Airtightness of Dutch Dwellings, Energy Procedia, 96(Supplement C) (2016), pp. 580-591.
10.1016/j.egypro.2016.09.103
9
J. Vinha, E. Manelius, M. Korpi, K.Salminen, J. Kurnitski, M. Kiviste, and A. Laukkarinen, Airtightness of residential buildings in Finland, Building and Environment, 93(Part 2) (2015), pp. 128-140.
10.1016/j.buildenv.2015.06.011
10
M. Colijn, A.G. Entrop, and M.E. Toxopeus, Evaluating the effectiveness of improved workmanship quality on the airtightness of Dutch detached houses, Energy Procedia, 132(Supplement C) (2017), pp. 843-848.
10.1016/j.egypro.2017.09.670
11
D. Sinnott, and M. Dyer, Air-tightness field data for dwellings in Ireland, Building and Environment, 51(Supplement C) (2012), pp. 269-275.
10.1016/j.buildenv.2011.11.016
12
F. Nasrollahi, Economic and Ecologic Method of Energy Efficiency in Office Buildings, World Sustainable Building Conference, Helsinki, Finland, (2011).
13
R.M. Dowd, and M. Mourshed, Low carbon Buildings: Sensitivity of Thermal Properties of Opaque Envelope Construction and Glazing, Energy Procedia, 75(Supplement C) (2015), pp. 1284-1289.
10.1016/j.egypro.2015.07.189
14
L. Chesné, T. Duforestel, J.J. Roux, and G. Rusaouën, Energy saving and environmental resources potentials: Toward new methods of building design Building and Environment, 58(Supplement C) (2012), pp. 199-207.
10.1016/j.buildenv.2012.07.013
15
M. Bojić, M. Despotović, J. Malešević, and D. Soković, Evaluation of the impact of internal partitions on energy conservation for residential buildings in Serbia, Building and Environment, 42(4) (2007), pp. 1644-1653.
10.1016/j.buildenv.2006.02.006
16
K. Kuusk, T. Kalamees, and M. Maivel, Cost effectiveness of energy performance improvements in Estonian brick apartment buildings, Energy and Buildings, 77 (2014), pp. 313-322.
10.1016/j.enbuild.2014.03.026
17
X. Shi, Design optimization of insulation usage and space conditioning load using energy simulation and genetic algorithm, Energy, 36(3) (2011), pp. 1659-1667.
10.1016/j.energy.2010.12.064
18
G.K. Oral, and Z. Yilmaz, Building form for cold climatic zones related to building envelope from heating energy conservation point of view. Energy and Buildings, 35(4) (2003), pp. 383-388.
10.1016/S0378-7788(02)00111-1
19
T. Tzoulis, and K. J. Kontoleon, Thermal Behaviour of Concrete Walls Around all Cardinal Orientations and Optimal Thickness of Insulation from an Economic Point of View. Procedia Environmental Sciences, 38(Supplement C) , (2017), pp. 381-388.
10.1016/j.proenv.2017.03.119
20
A. Tindale and S. Potter, Design Builder (Version v4), (2015), London,UK: DesignBuilder, Software Ltd.
21
N. Eskin and H. Turkmen, Analysis of Annual Heating and Cooling Energy Requirments for Office Buildings in Different Climates in Turkey, Energy and Buildings, 40 (2008), pp. 763-773.
22
F. Rubel and M. Kottek, Observed and projected climate shifts 1901-2100 depicted by world maps of the Köppen-Geiger climate classification, Meteorol, 19(1) (2010), pp. 135-141.
10.1127/0941-2948/2010/0430
23
S. Kunz, Meteonorm (Version 6), (2015), Bern, Switzerland.
24
IRIMO, I.R.OF IRAN Meteorological Organization, [Online], 2015. Available at: http://www.irimo.ir [Accessed 17/11/2017]
25
R. Liggett and M. Milne, ClimateConsultant (Version 6), 2017.
26
SIMLAB. Simulation environment for uncertainty and sensitivity analysis (version 2.2), Developed by the Joint Research Center of the European Commission, 2011. Available at: https://ec.europa.eu/jrc/en/samo/simlab [Accessed 21/10/2017]
Information
  • Publisher :Sustainable Building Research Center (ERC) Innovative Durable Building and Infrastructure Research Center
  • Publisher(Ko) :건설구조물 내구성혁신 연구센터
  • Journal Title :International Journal of Sustainable Building Technology and Urban Development
  • Volume : 9
  • No :3
  • Pages :124-138
  • Received Date : 2018-05-31
  • Accepted Date : 2018-07-19
Journal Informaiton International Journal of Sustainable Building Technology and Urban Development International Journal of Sustainable Building Technology and Urban Development
  • scopus
  • NRF
  • KOFST
  • KISTI Current Status
  • KISTI Cited-by
  • crosscheck
  • orcid
  • open access
  • ccl
Journal Informaiton Journal Informaiton - close